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ABSTRACT
Application of network analysis to dissect the potential molecular mechanisms of biological processes and complicated diseases has been the

new trend in biology and medicine in recent years. Among which, the protein–protein interactions (PPI) networks attract interests of most

researchers. Adiponectin, a cytokine secreted from adipose tissue, participates in a number of metabolic processes, including glucose

regulation and fatty acid metabolism and involves in a series of complicated diseases from head to toe. Hundreds of proteins including many

identified and potential drug targets have been reported to be involved in adiponectin related signaling pathways, which comprised a

complicated regulation network. Therapeutic target database (TTD) provides extensive information about the known and explored therapeutic

protein targets and the signaling pathway information. In this study, adiponectin associated drug targets based PPI was constructed and its

topological properties were analyzed, which might provide some insight into the dissection of adiponectin action mechanisms and promote

adiponectin signaling based drug target identification and drug discovery. J. Cell. Biochem. 114: 1145–1152, 2013. � 2012Wiley Periodicals, Inc.
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A s is well known, each cell’s behavior is a consequence of

the complex interactions among its numerous constituents,

such as DNA, RNA, proteins, metabolites, and other small molecules

[Albert, 2005] which assembles a series of complicated networks.

The study of these networks is becoming increasingly useful to

understanding and dissecting the complicated process of biological

systems. With the advances of genomics, transcriptome, proteomics,

metabolomics, and system biology, the study of biological systems

with network view has been attracted emphasis among biologists.

Today’s biological studies have entered an era of network analysis

which has several levels from DNA to protein. Among which, the

protein–protein interaction networks (PPIs) developed really rapidly

in recent years. Establishment of PPIs and using them to improve the

analysis and prediction of various biological informations have

been reported by a series of previous papers [Chou and Cai, 2006; Hu

et al., 2011ab; Huang et al., 2011a; Li et al., 2012]. As early as in

Chou and Cai [2006] established a predictor called ‘‘GO-PseAA’’ to

predict PPIs from sequences in a hybridization space. Recently,

Huang and his colleagues developed a new computational method

to predict the transcriptional activity for one-, two-, three-, and

four-site p53 mutants [Huang et al., 2011b]. The same group also

developed a network-based method to predict body fluids where

proteins are secreted into [Hu et al., 2011b] and use maximum

relevance minimum redundancy (mRMR) approach and shortest

path in PPI to identify colorectal cancer related genes [Li et al.,

2012]. The topological analysis of PPIs has also been considered as a

useful tool for predicting, identifying, and prioritizing drug-target

[Ruffner et al., 2007; Klipp et al., 2010], understanding of the

pathophysiology of complicated diseases such as cancer [Kusunoki

et al., 2010], diabetes and Alzheimer’s disease [Liu et al., 2012],

predicting the subcellular locations of proteins [Hu et al., 2012],

predicting of human genes’ regulatory functions [Gao et al.,

2012], and so on.

Adiponectin, an adipose tissue secreted hormone, has been

studied intensively for the past decade mainly due to its important

roles in obesity [Behre, 2007], inflammation [Robinson et al., 2011],
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diabetes [Han et al., 2009], cardiovascular diseases [Hui et al., 2012],

cancer [Chen and Wang, 2011], kidney diseases [Guebre-Egziabher

et al., 2007], etc. There have been more than 4,200 publications in

PubMed as searching with ‘‘adiponectin’’ in title which increased

quickly day by day. Accumulated data have revealed that

adiponectin is a beneficial adipokine with multiple bioactivities

from head to toe [Brochu-Gaudreau et al., 2010]. Underlying these

multifaceted actions, a large number of proteins including receptors,

adaptors, binding proteins for adiponectin have been identified

[Buechler et al., 2010]. Definitely, interactions among these proteins

could comprise complicated PPI networks. However, no network

analysis on these proteins has been performed yet. In the present

study, the networks for adipoenctin associated target based proteins

have been constructed and their topological properties have been

described based on the therapeutic target database (TTD).

METHODS

To establish a really useful analysis method or statistical predictor

for a protein system, a series of previous studies have proposed some

practical procedures [Lin et al., 2011; Wu et al., 2011; Wang et al.,

2011b; Chou et al., 2012]. In this paper, the construction and

analysis of adiponectin associated drug target based PPI was

developed by integrating these methods and application of open

source softwares. Dataset for adiponectin and adiponectin associat-

ed targets were retrieved and extracted from NCBI’s Entrez and TTD

(http://bidd.nus.edu.sg/group/ttd/ttd.asp). Adiponectin associated

interaction information was retrieved from NCBI’s Entrez Gene

in June 1, 2012 using the keywords ‘‘adiponectin,’’ ‘‘ADIPOQ,’’

‘‘C1Q and collagen domain containing,’’ ‘‘ACDC,’’ ‘‘ACRP30,’’

‘‘ADIPQTL1,’’ ‘‘ADPN,’’ ‘‘APM-1,’’ ‘‘APM1,’’ and ‘‘GBP28.’’ The

retrieved results including Homo sapiens were selected. The

corresponding each gene expression product-protein was con-

firmed. All the adiponectin associated proteins were imported to TTD

(http://bidd.nus.edu.sg/group/ttd/ttd.asp) to identify its potentials as

drug targets. TTD is a database designed to provide information

about the known and explored therapeutic protein and nucleic acid

targets, the targeted disease, the signaling pathways information

and the corresponding drugs directed at each of these targets. In

TTD, there are three classes of drug targets, successful drug target,

clinical drug target, and experimental drug targets [Zhu et al., 2010].

The genes of verified drug targets were further imported into

InterologFinder to retrieve known PPIs. InterologFinder is designed

to retrieve PPI from both known and predicted PPI data sets using

data from the National Center for Integrative Biomedical Informatics

(NCIBI)’s Michigan molecular interactions (MiMI) which contains

data from IntAct, DIP, BIND, and others. Experimentally determined

interactions between submitted proteins and all other proteins were

included while predicted interactions between submitted proteins

and all other proteins were excluded. To confirm the quality of this

data set, this database has been carefully compared with other

databases STITCH and KEGG, as well as the literature.

Cytoscape, an open source software platform for visualizing

complex networks and integrating these with any type of attribute

data, was used to construct and visualization of the target networks.

Cytoscape are available for download from http://www.cytoscape.

org/. NetworkAnalyzer (http://chianti.ucsd.edu/cyto_web/plugins/

index.php), a cytoscape plugin, was used to analyze the constructed

networks. NetworkAnalyzer performs analysis of biological net-

works and calculates network topology parameters including

the diameter of a network, the average number of neighbors, and

the number of connected pairs of nodes. It also computes the

distributions of more complex network parameters such as node

degrees, average clustering coefficients, topological coefficients,

and shortest path lengths. It displays the results in diagrams,

which can be saved as images or text files. CytoHubba (http://

chianti.ucsd.edu/cyto_web/plugins/index.php), a cytoscape plugin,

was used to explore important nodes/hubs and fragile motifs in the

networks by the topological algorithm degree. Other topological

algorithms including edge percolated component (EPC), maximum

neighborhood component (MNC), density of maximum neighbor-

hood component (DMNC), maximal clique centrality (MCC), and

centralities based on shortest paths, such as bottleneck (BN),

eccentricity, closeness, radiality, betweenness, and stress were used

for reference.

RESULTS AND DISCUSSION

ADIPONECTIN ASSOCIATED GENE/PROTEIN/TARGETS

By searching NCBI’s Entrez Gene in June 1, 2012, 505 relate genes

for adiponectin were obtained. Among which, 168 were from

H. sapiens. Seven genes are adiponectin, circulating adiponectin,

repeated results and discontinued genes which were excluded from

the study. TTD, a database established in 2002 [Chen et al., 2002],

aims to provide information about the known and explored

therapeutic targets, the targeted disease, pathway information

and the corresponding drugs directed at each of these targets.

After two updates, it currently contains 2,025 targets, including

364 successful, 286 clinical trial, 44 discontinued and 1,331 research

targets, 17,816 drugs, including 1,540 approved, 1,423 clinical trial,

14,853 experimental drugs and 3,681 multi-target agents (14,170

small molecules and 652 antisense drugs with available structure or

oligonucleotide sequence) [Zhu et al., 2010, 2012]. Recently, TTD

has been used for drug target analysis, drug research and discovery

analysis and drug screening. Chen et al. by comparing target and

non-target protein sequences compiled from the TTD, DrugBank,

and PFam TTD found that drug targets, like drugs, also display

shared features and have a likeness [Chen et al., 2007a]. It was also

used to predict the trends and analyze the difficulties in the

exploration of therapeutic targets for the treatment of endocrine,

metabolic, and immune disorders [Chen et al., 2007b]. In addition,

TTD provided potential targets and drugs for future personalized

treatment of colorectal cancer in a genome-wide study [Jasmine

et al., 2012]. In TTD, drug targets have been classified into four main

categories: successful targets, clinical trial targets, research targets,

and discontinued targets. In this study, adiponectin associated drug

targets were explored from TTD. After retrieving from TTD, 80 drug

targets were confirmed: 16 proteins are confirmed as successful drug

targets, 20 are clinical trial targets, 43 are research targets, and 1

discontinued target. The other 81 proteins are non-target proteins.
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The associated targets (successful drug target, clinical trial target,

and research target) are shown in Figure 1.

CONSTRUCTION OF TARGET ASSOCIATED REGULATORY NETWORKS

InterologFinder is designed to retrieve PPIs from both known and

our predicted PPI data sets. Prediction of PPI across five species

(human, mouse, fly, worm, and yeast) could be easily obtained from

InterologFinder [Wiles et al., 2010]. Target based PPI data retrieved

from InterologFinder were integrated using Cytoscape version 2.8.2

to model the network. Totally, four networks (successful targets

network (STN), clinical trial targets network (CTTN), research targets

network (RTN), total targets network (TTN), were constructed and

shown as Figure 2.

TOPOLOGICAL PROPERTIES OF THE NETWORKS

It has demonstrated that topological properties of PPI networks are

useful to characterize proteins functions [Sharan and Ideker, 2006],

to understand molecular mechanisms of diseases [Wang et al.,

2011a; Zhang et al., 2011], to explore potential drug targets

[Zhu et al., 2009], and to design drug in future [Hase et al., 2009].

To address the topological properties of the four networks,

NetworkAnalyzer, a plugin for cytoscape, was used. NetworkAna-

lyzer is a standard Cytoscape tool for comprehensive network

topology analysis [Doncheva et al., 2012] and it computes and

displays a comprehensive set of topological parameters, which

includes the number of nodes, edges, and connected components,

the network diameter, radius, density, centralization, heterogeneity,

and clustering coefficient, the characteristic path length, and the

distributions of node degrees, neighborhood connectivities, average

clustering coefficients, and shortest path lengths [Assenov et al.,

2008]. In this study, the topological properties are visualized for STN

(Fig. 3A), CTTN (Fig. 3B), RTN (Fig. 3C), and TTN (Fig. 3D) in Figure 3,

and are listed in Table I. Node degree distribution was used to

distinguish between random and scale-free network topologies. For

the four networks, the degree distribution of the proteins in each

network decreases following a power-law (P(k), kc where k is the

number of partner proteins). This suggested that these networks, like

other biological networks, demonstrating scale-free properties. The

network diameter is the largest distance between two nodes and the

characteristic path length gives the expected distance between two

connected nodes. The CTTN have the biggest network diameter and

longest characteristic path length. The average number of neighbors

indicates the average connectivity of a protein in the network. On

average, proteins in TTN have 2.961 interaction partners, a little

higher than the other three networks. A normalized version of

this parameter is the network density showing how densely the

network is populated with edges. As expected, the TTN has the

smallest network density while the STN has the highest. Network

centralization, another related parameter to network density

demonstrated similar results suggesting that the STN network

showed the most centralized topological structure. The average

clustering coefficient is the average of the clustering coefficients for

all the proteins to form clusters in the network. The average

clustering coefficient decreases as the number of protein interac-

tions increases, because sparsely connected proteins are neighbors

of highly connected proteins (hub proteins) [Kar et al., 2009]. In the

four networks, the STN has lower clustering coefficient suggesting

more protein interactions while the CTTN has the clustering

coefficient 0 suggesting that there is no connection at all between

these nodes in CTTN. Also, these parameters are visualized as

Figure 3.

HUBBA ANALYSIS ADIPONECTIN ASSOCIATED

TARGET NETWORKS

Hub Objects Analyzer (Hubba) is a web-based service for exploring

important nodes in an interactome network generated from specific

small- or large-scale experimental methods based on graph theory

[Lin et al., 2008]. To explore the important nodes in the adiponectin

related PPI networks, we further performed Hubba analysis. The

results for STN, CTTN, and RTN were shown in Figure 4. The top five

nodes in highest ranking are listed as Table II.

As a multiple bioactive adipokine, several potential targets for

adiponectin have been identified and proposed such as adiponectin

receptors (AdipoR1 and AdipoR2) [Kadowaki and Yamauchi, 2005;

Heiker et al., 2010; Kim et al., 2010], AMPK [Shibata et al., 2005;

Heiker et al., 2010; Iwabu et al., 2010], PPARa [Heiker et al., 2010],

and so on. However, there is no clinical and experimental drug

available for adiponectin receptors at present. Both receptors are

7-transmembrane proteins but showed unique structures with an

internal N-terminus and an external C-terminus, which is opposite

to the topology of G-protein coupled receptors. Also, recent findings

have identified several binding proteins such as CK2b, ERp46, and

RACK1 for these receptors [Buechler et al., 2010], which raise several

key questions to be answered before they became successful drug

targets. The Hubba analysis revealed that in the adiponectin

Fig. 1. Adiponectin associated drug targets. Among all the adiponectin

associated proteins 16, 20, and 43 proteins are confirmed as successful

drug targets (green), clinical trial targets (blue), and research targets (yellow),

respectively in TTD. Gene ID numbers were used to represent the targets.
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associated successful drug target networks, signal transducer and

activator of transcription 3 (STAT3), insulin receptor (INSR), C–C

chemokine receptor type 5 (CCR5), peroxisome proliferator-

activated receptor alpha (PPARa), and interleukin 1beta (IL-1b)

play an important role in adiponectin’s biological activities and

functions. STAT3 has been identified as a common downstream

effector of full and globular adiponectin. Both full and globular

adiponectin drastically suppress constitutive STAT3 activation in

DU145 and HepG2 cells [Miyazaki et al., 2005]. Down-regulation of

STAT3 phosphorylation on both tyrosine and serine residues was

also observed in HepG2 cells after adiponectin incubation [Sun et al.,

2011]. While in primary human hepatocytes and adult mouse

cardiac fibroblasts, adiponectin could activate STAT3 [Liao et al.,

2009; Wanninger et al., 2009]. The role of adiponectin in diabetes

and insulin resistance has been well established [Li et al., 2009].

Plasma adiponectin was suggested to be a marker of INSR

dysfunction [Semple et al., 2008]. Furthermore, in INSR transgen-

ic/knockout mice elevated adiponectin level in plasma and

decreased PPARa target gene expression in liver were reported

[Lin et al., 2007]. In primary human monocytes, adiponectin

stimulated release of CCL-2, -3, -4, and -5 while decreased the

surface abundance of CCR-2 and -5 is simultaneously [Neumeier

Fig. 2. The drug target proteins based networks for adiponectin. A: successful drug targets network (STN); (B) clinical trial targets network (CTTN); (C) research targets

network (RTN); (D) total targets network (TTN).
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et al., 2011]. In collagen-induced mice arthritis model, adiponectin

treatment mitigates the severity of arthritis and decreased

expression of IL-1b [Lee et al., 2008]. Therefore, previous studies

provide consistent results. CTTN and RTN networks also provide

some potential important signaling transduction molecules such as

glycogen synthase kinase 3b (GSK3b), toll-like receptor 4 (TLR4),

casein kinase 2, alpha 1 polypeptide (CSNK2A1), mitogen-activated

protein kinase 3 (MAPK3), etc. Taken together, these results will

facilitate the dissection of adiponectin related signaling pathways

and will be helpful for the identification of key signaling molecules

and drug target candidates.

Taken together, this study constructed four networks for

adiponectin associated drug targets and the topological properties

of these networks were analyzed as well, which might be facilitate

the dissection of adiponectin related signaling pathways and

adiponectin signaling based drug discovery. However, present

method also demonstrated several defects. Previous study demon-

strated that just like ‘‘junk’’ DNA and spurious DNA binding sites

there are nonselected, nonfunctional PPIs in the complicated protein

interaction networks. The existence of this ‘‘noisy’’ could help to

explain why PPIs determined from large-scale studies often lack

functional relationships between interacting proteins [Levy et al.,

2009]. Therefore, distinguish of functional and nonfunctional PPIs

could be an important step in establishment and analysis of

biological protein networks. In this study, all the PPIs were

considered as functional ones which might overestimate the role of

some biomolecules in adiponectin related signaling transduction

pathways. In addition, since user-friendly and publicly accessible

web-servers represent the future direction for developing practically

more useful models, simulated methods, or predictors [Chou and

Fig. 3. The topological properties of STN (A), CTTN (B), RTN (C), and TTN (D).

TABLE I. Topological Properties of Adiponectin Associated Drug

Targets Based Networks

Parameter STN CTTN RTN TTN

Number of nodes 364 388 783 1,207
Number of edges 425 393 1017 1,835
Characteristic path length 4.299 5.052 4.019 4.140
Network diameter 10 12 10 10
Avg. number of neighbors 2.330 2.026 2.557 2.961
Network density 0.006 0.005 0.003 0.002
Network centralization 0.290 0.231 0.222 0.144
Clustering coefficient 0.016 0 0.099 0.111
Network heterogeneity 3.510 3.510 3.688 3.275
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Shen, 2009], we shall make efforts in our future work to provide a

web-server for the method presented in this article.
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